Cooperative THF Ring-Opening by B(C₆F₅)₃ and a Tellurium Diimide Dimer

Tristram Chivers*[a] and Gabriele Schatte[a]

Dedicated to the memory of Professor Ron Snaith

Keywords: N ligands / Ring opening / Lewis acids / Boron / Tellurium

The tellurium diimide dimer $[tBuNTe(\mu-NtBu)_2TeNtBu]$ (1) and B(C₆F₅)₃ form a 1:1 adduct which instigates THF ringopening to give $[tBuNTe(\mu-NtBu)_2TeN(tBu)(CH_2)_4OB(C_6F_5)_3]$ (3) quantitatively; complex 3 is also formed rapidly when 1 is added to a THF solution of $B(C_6F_5)_3$.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

The perfluorinated borane $B(C_6F_5)_3$ was first reported in 1963.^[1] During the past decade this strong Lewis acid has attracted wide attention as a co-catalyst for olefin polymerization. [2] While early work established that $B(C_6F_5)_3$ forms 1:1 adducts with NH₃ and NMe₃,^[1] more recent studies with nitrogen bases have included cyano derivatives,[3] imidazole, [4] pyridines, [5] amines, [6] and the anions CN- [7] and NH₂^{-.[8]} As part of our studies of the Lewis base behaviour of the tellurium diimide dimer tBuNTe(μ-NtBu)₂TeNtBu (1),^[9] we have investigated the reaction of this bidentate ligand with $B(C_6F_5)_3$. We report here the formation of the 1:1 adduct 2, which engenders rapid THF ring-opening to produce $[tBuNTe(\mu-NtBu)_2TeN(tBu)(CH_2)_4OB(C_6F_5)_3]$ (3). Complex 2 is also generated when 1 is added to a THF solution of B(C₆F₅)₃. Although various transition-metal and uranium complexes promote THF ring-opening,[10] main-group element Lewis acids are rarely involved[11,12] and, to the best of our knowledge, this is the first example involving $B(C_6F_5)_3$.

The reaction of 1 with $B(C_6F_5)_3$ in a 1:1 molar ratio in n-pentane at 23 °C produced the adduct 2 as a moisturesensitive yellow-orange adduct in almost quantitative yield. The same reaction with a 1:2 molar ratio affords an equimolar mixture of 2 and B(C₆F₅)₃. The ¹¹B NMR chemical shift of 2 ($\delta = -6.1$ ppm) is consistent with the formation of a four-coordinate boron complex [cf. $\delta^{11}_{B} = 59.5 \text{ ppm}$ for $B(C_6F_5)_3$ in CD_2Cl_2].

An X-ray structural determination of 2, on crystals obtained from a saturated CH₂Cl₂ solution at −20 °C, confirmed the formation of a 1:1 adduct and revealed a cis(endo, exo) arrangement of the exocyclic NtBu groups

Te
$$\frac{tBu}{tBu}$$
 $\frac{tBu}{tBu}$ $\frac{tBu}{tBu}$

(Figure 1).[13] This conformation is also found in 1·HCl, whereas a cis(endo, endo) arrangement is observed for 1 in the solid state.[14] Pertinent bond lengths and bond angles for 2 are given in the caption to Figure 1. Coordination of 1 to $B(C_6F_5)_3$ lengthens one of the exocyclic Te-N bonds involving the coordinated nitrogen by ca. 0.10 Å, whereas the other exocyclic Te-N bond is unchanged. Concomitantly, the endocyclic Te-N bond lengths involving the tellurium atom connected to the three-coordinate nitrogen are elongated by ca. 0.04 Å. The Te₂N₂ ring is puckered, with a torsion angle N(2)-Te(1)-N(1)-Te(2) of $-21.17(11)^{\circ}$, and the geometry at the bridging N atoms is distinctly nonplanar $\Sigma \angle N(1) = 344.8^{\circ}$ and $\Sigma \angle N(2) = 341.3^{\circ}$. The B-N bond length of 1.632(4) Å in 2 is identical to that in (C₆F₅)₃B·NH₂tBu.^[15] As indicated in Figure 1 the tellurium atom Te(1) engages in weak Te···F interactions [3.136(2) and 3.112(2) Å; sum of van der Waals radii is 3.53 Å^[16]] with one of the ortho-fluorine atoms of two C₆F₅ groups. Similar intramolecular M···F contacts have been observed in transition-metal complexes.^[17]

[[]a] Department of Chemistry, University of Calgary Calgary, Alberta T2N 1N4, Canada Fax: (internat.) +1-403/289-9488 E-mail: chivers@ucalgary.ca

Figure 1. X-ray structure of **2** showing the weak intramolecular Te···F interactions; selected bond lengths (Å) and bond angles (deg): Te(1)-N(1) 2.035(2), Te(1)-N(2) 2.040(2), Te(1)-N(3) 1.970 (2), Te(2)-N(1) 2.061(3), Te(2)-N(2) 2.081(2), Te(2)-N(4) 1.875(3), B(1)-N(3) 1.632(4)

Surprisingly, an attempt to recrystallize 2 from THF/npentane (1:1) produced X-ray quality orange-yellow needles, within 20 min at 23 °C, of a complex identified as 3 by CHN analysis, multinuclear NMR spectroscopy and an X-ray structural analysis. The ¹H and ¹³C NMR spectra $[D_8]THF$ show the characteristic (CH₂CH₂CH₂CH₂O) resonances of a ring-opened THF molecule^[10d,11] in addition to resonances corresponding to the NtBu groups. In the ¹H NMR spectrum two of these resonances are almost isochronous ($\delta = 1.479$ and 1.477 ppm) and have a relative intensity corresponding to 27 H compared to 9 H for the third resonance at δ = 1.503 ppm. In the ¹³C NMR spectrum three environments are readily distinguishable because of their well-separated chemical shifts. The ¹¹B NMR chemical shift of this product in $[D_8]$ THF is $\delta = -3.6$ ppm. Collectively, the NMR spectroscopic data suggest that complex 2 promotes THF ring-opening to give the adduct 3, which is isolated in essentially quantitative yield. Subsequently, it was shown that 3 can also be obtained in high yield by addition of a THF solution of 1 to a solution of B(C₆F₅)₃ in THF at 23 °C.

X-ray crystallography^[18] confirmed the molecular structure of 3 (Figure 2), with the ring-opened THF molecule linked to boron through the oxygen atom and to one of the terminal NtBu groups via a carbon atom. In contrast to 2, the (CH₂)₄OB(C₆F₅)₃ substituent occupies an *endo* position with respect to the Te₂N₂ ring while both terminal NtBu groups are in exo configurations. The trends in Te-N bond lengths in 3 compared to those in 1^[14] are similar to, but less pronounced than, those described above for 2. An interesting feature of the solid-state structure of 3 is the intermolecular Te···F interactions of 2.991(2) and 3.275(2) Å (Figure 2) that produce molecular strands parallel to the b axis. These strands are separated by THF solvent molecules. The shorter contact involves Te(1), which has a larger formal positive charge than Te(2) (Scheme 1). The Te₂N₂ ring in 3, with a torsion angle of 14.0(1)°, is less puckered than that of **1** and **2**, and the geometry at the bridging nitrogen atoms is closer to planarity $[\Sigma \angle N(1) = 352.3^{\circ}$ and $\Sigma \angle N(2) = 356.8^{\circ}]$. The B-O bond length in **3** is 1.444(5) Å {cf. 1.480(11) Å in the anion $[HOB(C_6F_5)_3]^{-}$ }. [19]

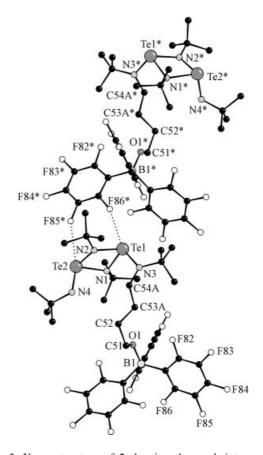


Figure 2. X-ray structure of **3** showing the weak intermolecular Te···F interactions; selected bond lengths (A) and bond angles (deg): Te(1)-N(1) 2.020(3), Te(1)-N(2) 2.012(3), Te(1)-N(3) 1.922 (3), Te(2)-N(1) 2.036(3), Te(2)-N(2) 2.053(3), Te(2)-N(4) 1.905(3), Te(2)-N(1) 1.444(5); the THF molecule in the lattice is not shown

Scheme 1

The NMR spectra for **3** in $[D_8]$ THF at 23 °C indicate that the Te···F contacts are not maintained in solution. Thus, the ¹⁹F NMR spectrum shows only one set of resonances at $\delta = 131.3$, 163.8 and 166.7 ppm, corresponding to the *ortho*, *para* and *meta* fluorine atoms, respectively, of the three C_6F_5 groups. By contrast, the complex NMR spectra for **2** in CD₂Cl₂ at 23 °C indicate intramolecular Te···F interactions. Thus, the ¹⁹F NMR spectrum exhibits multiple resonances in each of the regions characteristic of *ortho*,

meta and para-fluorines of a C₆F₅ group. The ¹³C NMR spectrum of **2** is especially difficult to assign due to numerous overlapping doublets. The ¹H NMR spectrum of **2** exhibits four equally intense singlets that are consistent with the inequivalence of the bridging NtBu groups as well as the terminal NtBu groups. Variable-temperature NMR studies indicated the presence of conformational isomers, but the spectra could not be unequivocally assigned.

The strong Lewis acid $B(C_6F_5)_3$ forms a complex with THF.^[20] Over a few hours at room temperature, the THF is polymerized by $B(C_6F_5)_3$, as reported for some other Lewis acids, for example $AlCl_3$.^[21] The addition of 1 to a freshly prepared solution of $B(C_6F_5)_3$ in THF preempts this polymerization and, instead, generates the ring-opened complex 3. By analogy with transition-metal systems,^[10] it is proposed that coordination of the THF oxygen atom to the electrophilic boron centre polarizes the C-O bond so that the α -carbon atom is susceptible to nucleophilic attack. As a result, and in contrast to the THF ring-opening mode observed for PPh₃/TeBr₄,^[12] the carbon atom of the THF fragment is bonded to the nucleophilic centre in 3.

Experimental Section

2: A solution of $B(C_6F_5)_3$ (0.285 g, 0.556 mmol) in *n*-pentane (20 mL) was added to an orange-red solution of sublimed $[tBuNTe(\mu-NtBu)_2TeNtBu]^{[19]}$ (0.300 g, 0.556 mmol) in *n*-pentane (20 mL) at −78 °C. After 3.5 h at 23 °C the solvent was removed from the reaction mixture under vacuum to give analytically pure $[tBuNTe(\mu-NtBu)_2TeN(tBu)B(C_6F_5)_3]$ (0.546 g, 0.519 mmol, 93%) as a yellow-orange solid. $C_{34}H_{36}BF_{15}N_4Te_2$ (1051.68): calcd. C 38.83, H 3.45, N 5.33; found C 38.13, H 3.24, N 4.93. All NMR spectroscopic data were recorded in CD₂Cl₂ solution at 23 °C. ¹H NMR: $\delta = 1.617$ (s, 9 H, tBu), 1.589 (s, 9 H, tBu), 1.501 (s, 9 H, *t*Bu), 1.426 (s, 9 H, *t*Bu) ppm. ¹¹B NMR: $\delta = -6.06$ (s) ppm. ¹⁹F NMR: $\delta = -116.10$ (m, ortho), -124.30 (m, ortho), -130.10 (m, ortho), -130.50 (m, ortho), -130.90 (m, ortho), -157.24 (m, para), -159.60 (m, para), -161.65 (m, para), -161.90 (m, meta), -164.56 (m, meta), -166.42 (m, meta), -166.88 (m, meta) ppm. ¹²⁵Te NMR: $\delta = 1552.9$ (s) ppm.

3: A solution of 1 (0.300 g, 0.556 mmol) in THF (10 mL) was added to a solution of $B(C_6F_5)_3$ (0.285 g, 0.556 mmol) in THF (10 mL) at -78 °C. After 2 h at 23 °C the solvent was removed under vacuum to give 3·THF (0.533 g, 0.474 mmol, 85%) as an orange solid. Analytical and spectroscopic data were obtained for crystals of 3. THF obtained from the attempted recrystallization of 2 from THF/n-pentane (1:1). $C_{42}H_{52}BF_{15}N_4O_2Te_2$ (1195.89): calcd. C 42.18, H 4.38, N 4.68; found C 42.11, H 4.21, N 4.61. All NMR spectroscopic data were recorded in [D₈]THF at 23 °C. ¹H NMR: $\delta = 4.02$ (t, 2 H, CH₂-CH₂-CH₂-CH₂-O), 3.61 (4 H, THF, CH₂-CH₂-O), 3.17 (t, 2 H, CH₂-CH₂-CH₂-CH₂-O), 1.96 (q, 2 H, CH₂-CH₂-CH₂-CH₂-O), 1.77 (4 H, THF, CH₂-CH₂-O), 1.59 (q, 2 H, CH_2 - CH_2 - CH_2 - CH_2 -O), 1.50 (s, 9 H, tBu), 1.479 and 1.477 (both s, 27 H, *t*Bu) ppm. ¹¹B NMR: $\delta = -3.64$ (s) ppm. ¹³C NMR: $\delta =$ 149.09 [d, ${}^{1}J_{C,F} = 235.0 \text{ Hz}$, ortho], 138.91 [d, ${}^{1}J_{C,F} = 245.9 \text{ Hz}$, para], 137.20 [d, ${}^{1}J_{C,F} = 249.1 \text{ Hz}$, meta], 126.64 (br, ipso), 68.27 (THF, CH₂-CH₂-O), 66.44 (CMe₃), 64.03 (CH₂-CH₂-CH₂-CH₂-O), 63.23 (CMe₃), 60.23 (CMe₃), 44.83 (CH₂-CH₂-CH₂-CH₂-O), 36.83 (CMe₃), 30.85 (CH₂-CH₂-CH₂-CH₂-O), 26.43 (THF, CH₂-CH₂-O) ppm. ¹⁹F NMR: $\delta = -131.34$ (m, *ortho*), -163.84 (m, *para*), -166.71 (m, *meta*) ppm. ¹²⁵Te NMR: $\delta = 1395.7$ (s) ppm.

X-ray data were collected on a Nonius Kappa CCD diffractometer using Mo- K_{α} radiation ($\lambda = 0.71073$ Å) at 173 K. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included at geometrically idealized positions and not refined.

Acknowledgments

The authors gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council (Canada).

- [1] A. G. Massey, A. J. Park, F. G. A. Stone, Proc. Chem. Soc. 1963, 212.
- [2] For reviews, see: [2a] W. Piers, T. Chivers, Chem. Soc. Rev. 1997, 26, 345-354. [2b] E. Y.-X. Chen, T. J. Marks, Chem. Rev. 2000, 100, 1391-1434.
- [3] [3a] W. Fraenk, T. M. Klapötke, B. Krumm, P. Mayer, H. Piotrowski, M. Vogt, Z. Anorg. Allg. Chem. 2002, 628, 745-750.
 [3b] H. Jacobson, H. Berke, S. Döring, G. Kehr, G. Erker, R. Fröhlich, O. Meyer, Organometallics 1999, 18, 1724-1735.
- [4] D. Röltger, G. Erker, R. Fröhlich, S. Kotila, J. Organomet. Chem. 1996, 518, 17-19.
- [5] M. J. G. Lesley, A. Woodward, N. J. Taylor, T. B. Marder, I. Cazenobe, I. Ledoux, J. Zyss, A. Thornton, D. W. Bruce, A. K. Kakhar, *Chem. Mater.* 1998, 10, 1355–1365.
- [6] N. Millot, C. C. Santini, B. Fenet, J. M. Basset, Eur. J. Inorg. Chem. 2002, 3328-3335.
- [7] S. J. Lancaster, D. A. Walker, M. Thornton-Pett, M. Bochmann, Chem. Commun. 1999, 1533–1534.
- [8] S. J. Lancaster, A. Rodriguez, A. Lara-Sanchez, M. D. Hannant, D. A. Walker, D. H. Hughes, M. Bochmann, *Organometallics* 2002, 21, 451–453.
- [9] [9a] T. Chivers, M. Parvez, G. Schatte, Angew. Chem. 1999, 111, 2355-2357; Angew. Chem. Int. Ed. 1999, 38, 2217-2219.
 [9b] T. Chivers, M. Parvez, G. Schatte, Inorg. Chem. 1999, 38, 5171-5177.
 [9c] T. Chivers, M. Parvez, G. Schatte, Inorg. Chem. 2001, 40, 540-545.
- [10] For recent examples, see [10a] A. Mommertz, R. Leo, W. Massa, K. Harms, K. Dehnicke, Z. Anorg. Allg. Chem. 1998, 624, 1647–1652. [10b] M. Polamo, I. Multikainen, M. Leskelä, Acta Crystallogr., Sect. C 1997, 53, 1036–1037. [10c] L. R. Avens, D. M. Barnhart, C. J. Burns, S. D. McKee, Inorg. Chem. 1996, 35, 537–539. [10d] W. J. Evans, J. T. Leman, J. W. Ziller, Inorg. Chem. 1996, 35, 4283–4291. [10e] M. P. C. Campello, A. Domingos, J. Santos, J. Organomet. Chem. 1994, 484, 37–46. [10f] Z. Guo, P. K. Bradley, R. F. Jordan, Organometallics 1992, 11, 2690–2693. [10g] T. L. Breen, D. W. Stephan, Inorg. Chem. 1992, 31, 4019–4022.
- [11] J. P. Campbell, W. L. Gladfelter, *Inorg. Chem.* 1997, 36, 4094–4098.
- [12] S. M. Kunnari, R. Oilunkaniemi, R. S. Laitinen, M. Ahlgren, J. Chem. Soc., Dalton Trans. 2001, 3417-3418.
- [13] Crystal data for 2: crystal size $0.12 \times 0.12 \times 0.10$ mm³, monoclinic $P2_1/c$ (No. 14) a=12.3660(2) Å, b=18.3420(4) Å, c=17.1050(3) Å, $\beta=98.3940(8)^\circ$, V=838.15(12) ų, Z=4. The three methyl carbon atoms [labelled C(41A), C(42A), C(43A), C(41B), C(42B) and C(43B)] of one of the *tert*-butyl groups were disordered over two positions with refined site-occupancy factors of 0.581(9) and 0.419(9), respectively. The final cycle of full-matrix least-squares refinement using F^2 was based on 8683 reflections [6763 reflections with $I > 2\sigma(I)$], 533 variable parameters and converged with R=0.0338.
- [14] [14a] T. Chivers, X. Gao, M. Parvez, J. Am. Chem. Soc. 1995, 117, 2359-2360. [14b] T. Chivers, X. Gao, M. Parvez, Inorg. Chem. 1996, 35, 9-15.
- [15] T. Chivers, G. Schatte, *Inorg. Chem.* to be submitted.
- [16] [16a] N. W. Alcock, Adv. Inorg. Chem. Radiochem. 1972, 15,

SHORT COMMUNICATION

- 1-58. [16b] L. Pauling, *The Nature of the Chemical Bond*, 3rd edn. Cornell University Press, Ithaca, NY, 1960, p. 260.
- [17] For a recent example, see: H.-C. Liang, E. Kim, C. D. Incarvito, A. L. Rheingold, K. D. Karlin, *Inorg. Chem.* 2002, 41, 2209–2212.
- ^[18] Crystal data for **3**·THF: crystal size $0.10 \times 0.10 \times 0.05$ mm³, monoclinic $P2_1/c$ (No. 14), a = 10.9920(1) Å, b = 24.3640(3) Å, c = 18.8900(2) Å, $\beta = 102.4600(7)^\circ$, V = 4939.76(9) Å³, Z = 4. Two of the carbon atoms [labelled C(53A), C(54A) and C(53B), C(54B)] of the ring-opened THF molecule were disordered over two sites with refined site-occupancy factors of 0.647(6) and 0.353(6), respectively. Least-squares refinement on F^2 based on 10081 reflections and 614 variable parameters [7186 reflections with $I > 2\sigma(I)$] gave a final R_1 of 0.039. CCDC-211059 (2) and -208709 (3) contain the supplementary
- crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) +44-1223/336-033; or E-mail: deposit@ccdc.cam.ac.uk).
- [19] A. A. Danopoulus, J. R. Galsworthy, M. L. H. Green, S. Cafferkey, L. H. Doerrer, M. B. Hursthouse, *Chem. Commun.* 1998, 2529–2530.
- [20] L. H. Doerrer, A. J. Graham, D. Haussinger, M. L. H. Green, J. Chem. Soc., Dalton Trans. 2000, 813-820.
- [21] F. Johnson, Friedel-Crafts and Related Reactions (Ed.: G. A. Olah), Interscience: New York, 1965, Vol. IV, p. 1.

Received June 1, 2003 Early View Article Published Online August 11, 2003